Force and Position Control for Electrohydraulic Systems of a Robotic Excavator
نویسندگان
چکیده
In impedance control of hydraulic excavators the piston position and ram force of each hydraulic cylinder for the axis control of the boom, arm, and bucket can be determined. The problem is thus how to find the control voltage applied to the servovalves to track these commands to the hydraulic systems. This paper presents analytic, simulation and experimental results for controllers that have been developed in our laboratory to achieve force and position tracking of clectrohydraulic systems of a robotic mini-excavator. The systems with hydraulic cylinders as actuators are represented by a comprehensive model taking into account friction, nonlinearities, and uncertainties. A discontinuous observer is developed for estimating both piston velocity and disturbance force including friction. With an observer-based compensation for disturbance, tracking of the piston rain force and position is guaranteed using a robust sliding mode controller. The control signal consists of three components: equivalent control, switching control, and fuzzy control. High performance and strong robustness can be obtained as demonstrated by simulation and experiments performed on a hydraulically-actuated Komatsu PC05-7 robotic excavator. Promising results are reported, and issues relating to future work are discussed.
منابع مشابه
Dynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملForce Sensor by Driving Hydraulic Cylinders: Identification of Inertial Parameters and Tests
Force feedback sensors are useful for the planning of robotic digging trajectories. In particular, when combined with force-control algorithms it becomes possible to sense buried objects and to determine the weight of excavated materials. The proposed force sensor system makes use of hydraulic cylinder pressure and thereby measures machine force indirectly. Successful implementation of such an ...
متن کاملFeedback linearisation control for electrohydrauIic syste:ms of a robotic excavator
A bstractThis paper presents a feedback linearisation approach to the control of electrohydraulicservo systems of a robotic excavator. The control system of the bucket hydraulic cylinder is used as a testbed. Simulation and experimental results are provided. The results obtained demonstrate the advantage of the proposed controller over conventional linearised controllers in dealing with nonline...
متن کاملExperimental Identification and Hybrid PID-Fuzzy Position Control of Continuum Robotic Arms
Continuum robotic arms that are inspired from nature, have many advantages compared to traditional robots, which motivate researchers in this field. Dynamic modeling and controlling these robots are challenging subjects due to complicated nonlinearities and considerable uncertainties existing in these structures. In this paper, first a dynamic three-dimensional model of the continuum robotic ar...
متن کامل